Complex Numbers And Quadratic Equations question 209

Question: The roots of $ {{(2-2i)}^{1/3}} $ are

Options:

A) $ \sqrt{2}( \cos \frac{\pi }{12}-i\sin \frac{\pi }{12} ),\sqrt{2}( -\sin \frac{\pi }{12}+i\cos \frac{\pi }{12} ),-1-i $

B) $ \sqrt{2}( \cos \frac{\pi }{12}+i\sin \frac{\pi }{12} ),\sqrt{2}( -\sin \frac{\pi }{12}-i\cos \frac{\pi }{12} ),1+i $

C) $ 1+\sqrt{2}i,-1-i,-2-2i $

D) None of the above

Show Answer

Answer:

Correct Answer: A

Solution:

Using De Moivre’s theorem $ {{(\cos \theta +i\sin \theta )}^{n}}=(\cos n\theta +i\sin n\theta ) $ and putting $ n=0 $ , 1, 2 then we get required roots.