Complex Numbers And Quadratic Equations question 211

Question: The following in the form of $ A+iB $ $ {{(\cos 2\theta +i\sin 2\theta )}^{-5}} $ $ {{(\cos 3\theta -i\sin 3\theta )}^{6}} $ $ {{(\sin \theta -i\cos \theta )}^{3}} $ in the form of $ A+iB $ is [MNR 1991]

Options:

A) $ (\cos 25\theta +i\sin 25\theta ) $

B) $ i(\cos 25\theta +i\sin 25\theta ) $

C) $ i(\cos 25\theta -i\sin 25\theta ) $

D) $ (\cos 25\theta -i\sin 25\theta ) $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin \theta -i\cos \theta =-i^{2}\sin \theta -i\cos \theta =-i(\cos \theta +i\sin \theta ) $ Given expression is $ {{(-i)}^{3}}[\cos (-10\theta -18\theta +3\theta )+i\sin (-25\theta )] $ = $ i(\cos 25\theta -i\sin 25\theta ] $ .