Complex Numbers And Quadratic Equations question 214

Question: $ {{( \frac{1+\cos \varphi +i\sin \varphi }{1+\cos \varphi -i\sin \varphi } )}^{n}}= $

Options:

A) $ \cos n\varphi -i\sin n\varphi $

B) $ \cos n\varphi +i\sin n\varphi $

C) $ \sin n\varphi +i\cos n\varphi $

D) $ \sin n\varphi -i\cos n\varphi $

Show Answer

Answer:

Correct Answer: B

Solution:

L.H.S. $ ={{[ \frac{2{{\cos }^{2}}(\varphi /2)+2i\sin (\varphi /2)\cos (\varphi /2)}{2{{\cos }^{2}}(\varphi /2)-2i\sin (\varphi /2)\cos (\varphi /2)} ]}^{n}} $ $ ={{[ \frac{\cos (\varphi /2)+i\sin (\varphi /2)}{\cos (\varphi /2)-i\sin (\varphi /2)} ]}^{n}} $ $ ={{[ \frac{{e^{i(\varphi /2)}}}{{e^{-i(\varphi /2)}}} ]}^{n}}={{({e^{i\varphi }})}^{n}} $ $ =\cos n\varphi +i\sin n\varphi $ .