Complex Numbers And Quadratic Equations question 217

Question: $ {{( \frac{\cos \theta +i\sin \theta }{\sin \theta +i\cos \theta } )}^{4}} $ equals [RPET 1996]

Options:

A) $ \sin 8\theta -i\cos 8\theta $

B) $ \cos 8\theta -i\sin 8\theta $

C) $ \sin 8\theta +i\cos 8\theta $

D) $ \cos 8\theta +i\sin 8\theta $

Show Answer

Answer:

Correct Answer: D

Solution:

$ {{( \frac{\cos \theta +i\sin \theta }{\sin \theta +i\cos \theta } )}^{4}}=\frac{{{(\cos \theta +i\sin \theta )}^{4}}}{i^{4}{{(\cos \theta -i\sin \theta )}^{4}}} $ $ =\frac{\cos 4\theta +i\sin 4\theta }{\cos 4\theta -i\sin 4\theta } $ $ =\frac{(\cos 4\theta +i\sin 4\theta )(\cos 4\theta +i\sin 4\theta )}{(\cos 4\theta -i\sin 4\theta )(\cos 4\theta +i\sin 4\theta )} $ $ \frac{{{(\cos 4\theta +i\sin 4\theta )}^{2}}}{{{\cos }^{2}}4\theta +{{\sin }^{2}}4\theta }=\cos 8\theta +i\sin 8\theta $