Complex Numbers And Quadratic Equations question 22
If the roots of $ x^{2}+x+a=0 $ exceed 1, then [EAMCET 1994]
Options:
A) $ 2<a<3 $
B) $ a>3 $
C) $ -3<a<3 $
D) $ a<-2 $
Show Answer
Answer:
Correct Answer: D
Solution:
If the roots of the quadratic equation  $ ax^{2}+bx+c=0 $  exceed a number k, then  $ ak^{2}+bk+c>0 $  if  $ a>0, $   $ b^{2}-4ac\ge 0 $  and sum of the roots  $ >2k $  Therefore, if the roots of  $ x^{2}+x+a=0 $  exceed a number a, then  $ a^{2}+a+a>0,1-4a\ge 0 $  and  $ -1>2a $
Þ  $ a(a+2)>0, $  $ a\le \frac{1}{4} $ and  $ a<-\frac{1}{2} $
Þ  $ a>0 \text{ or } a<-2, a<\frac{1}{4} $ and  $ a<-\frac{1}{2} $  Hence $ a<-2 $ .
 BETA
  BETA 
             
             
           
           
           
          