Complex Numbers And Quadratic Equations question 22

If the roots of $ x^{2}+x+a=0 $ exceed 1, then [EAMCET 1994]

Options:

A) $ 2<a<3 $

B) $ a>3 $

C) $ -3<a<3 $

D) $ a<-2 $

Show Answer

Answer:

Correct Answer: D

Solution:

If the roots of the quadratic equation $ ax^{2}+bx+c=0 $ exceed a number k, then $ ak^{2}+bk+c>0 $ if $ a>0, $ $ b^{2}-4ac\ge 0 $ and sum of the roots $ >2k $ Therefore, if the roots of $ x^{2}+x+a=0 $ exceed a number a, then $ a^{2}+a+a>0,1-4a\ge 0 $ and $ -1>2a $ Þ $ a(a+2)>0, $ $ a\le \frac{1}{4} $ and $ a<-\frac{1}{2} $
Þ $ a>0 \text{ or } a<-2, a<\frac{1}{4} $ and $ a<-\frac{1}{2} $ Hence $ a<-2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें