Complex Numbers And Quadratic Equations question 220

Question: $ {{(-\sqrt{3}+i)}^{53}} $ where $ i^{2}=-1 $ is equal to [AMU 2000]

Options:

A) $ 2^{53}(\sqrt{3}+2i) $

B) $ 2^{52}(\sqrt{3}-i) $

C) $ 2^{53}( \frac{\sqrt{3}}{2}+\frac{1}{2}i ) $

D) $ 2^{53}(\sqrt{3}-i) $

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{(-\sqrt{3}+i)}^{53}} $ $ =2^{53}{{( \frac{-\sqrt{3}}{2}+\frac{i}{2} )}^{53}} $ = $ 2^{53}{{(\cos 150^{o}+i\sin 150^{o})}^{53}} $ $ =2^{53}[\cos (150^{o}\times 53)+i\sin (150^{o}\times 53)] $ $ =2^{53}[\cos (22\pi +30^{o})+i\sin (22\pi +30^{o})] $ $ =2^{53}[\cos 30^{o}+i\sin 30^{o}] $ $ =2^{53}[ \frac{\sqrt{3}}{2}+i\frac{1}{2} ] $ .