Complex Numbers And Quadratic Equations question 222

Question: We express $ \frac{{{(\cos 2\theta -i\sin 2\theta )}^{4}}{{(\cos 4\theta +i\sin 4\theta )}^{-5}}}{{{(\cos 3\theta +i\sin 3\theta )}^{-2}}{{(\cos 3\theta -i\sin 3\theta )}^{-9}}} $ in the form of $ x+iy $ , we get [Karnataka CET 2001]

Options:

A) $ \cos 49\theta -i\sin 49\theta $

B) $ \cos 23\theta -i\sin 23\theta $

C) $ \cos 49\theta +i\sin 49\theta $

D) $ \cos 21\theta +i\sin 21\theta $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{{{(\cos 2\theta -i\sin 2\theta )}^{4}}{{(\cos 4\theta +i\sin 4\theta )}^{-5}}}{{{(\cos 3\theta +i\sin 3\theta )}^{-2}}{{(\cos 3\theta -i\sin 3\theta )}^{-9}}} $ $ =\frac{{{[{{(\cos \theta +i\sin \theta )}^{-2}}]}^{4}}{{[{{(\cos \theta +i\sin \theta )}^{4}}]}^{-5}}}{{{[{{(\cos \theta +i\sin \theta )}^{3}}]}^{-2}}{{[{{(\cos \theta +i\sin \theta )}^{-3}}]}^{-9}}} $ $ =\frac{{{(\cos \theta +i\sin \theta )}^{-8}}{{(\cos \theta +i\sin \theta )}^{-20}}}{{{(\cos \theta +i\sin \theta )}^{-6}}{{(\cos \theta +i\sin \theta )}^{27}}} $ $ ={{(\cos \theta +i\sin \theta )}^{-8-20+6-27}}={{(\cos \theta +i\sin \theta )}^{-49}} $ $ =\cos 49\theta -i\sin 49\theta . $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें