Complex Numbers And Quadratic Equations question 223

Question: $ {{(\sin \theta +i\cos \theta )}^{n}} $ is equal to [RPET 2001]

Options:

A) $ \cos n\theta +i\sin n\theta $

B) $ \sin n\theta +i\cos n\theta $

C) $ \cos n( \frac{\pi }{2}-\theta )+i\sin n( \frac{\pi }{2}-\theta ) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ {{(\sin \theta +i\cos \theta )}^{n}} $ $ ={{[ \cos ( \frac{\pi }{2}-\theta )+i\sin ( \frac{\pi }{2}-\theta ) ]}^{n}} $ = $ \cos n( \frac{\pi }{2}-\theta )+i\sin n( \frac{\pi }{2}-\theta ) $ .