Complex Numbers And Quadratic Equations question 224

Question: The value of $ \frac{(\cos \alpha +i\sin \alpha )(\cos \beta +i\sin \beta )}{(\cos \gamma +i\sin \gamma )(\cos \delta +i\sin \delta )} $ is [RPET 2001]

Options:

A) $ \cos (\alpha +\beta -\gamma -\delta )-i\sin (\alpha +\beta -\gamma -\delta ) $

B) $ \cos (\alpha +\beta -\gamma -\delta )+i\sin (\alpha +\beta -\gamma -\delta ) $

C) $ \sin (\alpha +\beta -\gamma -\delta )-i\cos (\alpha +\beta -\gamma -\delta ) $

D) $ \sin (\alpha +\beta -\gamma -\delta )+i\cos (\alpha +\beta -\gamma -\delta ) $

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{(\cos \alpha +i\sin \alpha )(\cos \beta +i\sin \beta )}{(\cos \gamma +i\sin \gamma )(\cos \delta +i\sin \delta )} $ $ =\cos (\alpha +\beta -\gamma -\delta )+i\sin (\alpha +\beta -\gamma -\delta ) $ [By de-movire’s theorem].