Complex Numbers And Quadratic Equations question 236

Question: $ {{(27)}^{1/3}}= $

Options:

A) 3

B) $ 3,3i,3i^{2} $

C) $ 3,3\omega ,3{{\omega }^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ x={27^{1/3}} $ $ =x^{3}-27=0 $
Þ $ (x-3)(x^{2}+3x+9)=0 $ $ x=3,x=3( \frac{-1\pm i\sqrt{3}}{2} ) $ . Hence, roots are $ 3,3\omega ,3{{\omega }^{2}} $ . Trick: As we know $ {{(27)}^{1/3}} $ must have 3 roots, so (a) option cannot be the best. Here (c) satisfies.