Complex Numbers And Quadratic Equations question 236
Question: $ {{(27)}^{1/3}}= $
Options:
A) 3
B) $ 3,3i,3i^{2} $
C) $ 3,3\omega ,3{{\omega }^{2}} $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
Let   $ x={27^{1/3}} $   $ =x^{3}-27=0 $
Þ  $ (x-3)(x^{2}+3x+9)=0 $   $ x=3,x=3( \frac{-1\pm i\sqrt{3}}{2} ) $ .  Hence, roots are $ 3,3\omega ,3{{\omega }^{2}} $ . Trick: As we know  $ {{(27)}^{1/3}} $  must have 3 roots, so (a) option cannot be the best. Here (c) satisfies.
 BETA
  BETA 
             
             
           
           
           
          