Complex Numbers And Quadratic Equations question 237

Question: If $ n $ is a positive integer not a multiple of 3, then $ 1+{{\omega }^{n}}+{{\omega }^{2n}} $ = [MP PET 2004]

Options:

A) 3

B) 1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ n=3k+1 $ $ {{\omega }^{n}}+{{\omega }^{2n}}={{\omega }^{3k+1}}+{{\omega }^{2(3k+1)}}={{\omega }^{3k}}\omega +{{\omega }^{6k}}{{\omega }^{2}} $ $ ={{({{\omega }^{3}})}^{k}}.\omega +{{({{\omega }^{3}})}^{2k}} $ . $ {{\omega }^{2}}=\omega +{{\omega }^{2}}=-1 $ Hence $ 1+{{\omega }^{n}}+{{\omega }^{2n}}=1-1=0 $