Complex Numbers And Quadratic Equations question 253

Question: If $ \alpha ,\beta ,\gamma $ are the cube roots of $ p(p<0) $ , then for any $ x,y $ and $ z,\frac{x\alpha +y\beta +z\gamma }{x\beta +y\gamma +z\alpha }= $ [IIT 1989]

Options:

A) $ \frac{1}{2}(-1+i\sqrt{3}) $

B) $ \frac{1}{2}(1+i\sqrt{3}) $

C) $ \frac{1}{2}(1-i\sqrt{3}) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Since $ p<0 $ . Let $ p=-q $ , where $ q $ is positive. Therefore $ {p^{1/3}}=-{q^{1/3}}{{(1)}^{1/3}}. $ Hence $ \alpha =-{q^{1/3}} $ , $ \beta =-{q^{1/3}}\omega $ and $ \gamma =-{q^{1/3}}{{\omega }^{2}} $ The given expression $ \frac{x+y\omega +z{{\omega }^{2}}}{x\omega +y{{\omega }^{2}}+z}=\frac{1}{\omega }.\frac{z\omega +y{{\omega }^{2}}+z}{x\omega +y{{\omega }^{2}}+z} $ $ =\frac{1}{\omega }={{\omega }^{2}} $ .