Complex Numbers And Quadratic Equations question 256

Question: If $ \omega $ is a complex cube root of unity, then for positive integral value of $ n $ , the product of $ \omega .{{\omega }^{2}}.{{\omega }^{3}}……..{{\omega }^{n}} $ , will be [Roorkee 1991]

Options:

A) $ \frac{1-i\sqrt{3}}{2} $

B) $ -\frac{1-i\sqrt{3}}{2} $

C) 1

D) (b) and (c) both

Show Answer

Answer:

Correct Answer: D

Solution:

The product is given by $ \omega .{{\omega }^{2}}.{{\omega }^{3}}…..{{\omega }^{n}}={{\omega }^{1+2+3+……+n}}={{\omega }^{n(n+1)/2}} $ On putting $ n=1,2,3,….., $ we get $ ={{\omega }^{1(1+1)/2}}=\omega ,{{\omega }^{2(2+1)/2}}={{\omega }^{3}}=1,…..{{\omega }^{4(5)/2}}={{\omega }^{10}}=\omega $ Hence it gives the values 1 and $ \omega $ only.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें