Complex Numbers And Quadratic Equations question 263

Question: Let $ \Delta =| \begin{matrix} 1 & \omega & 2{{\omega }^{2}} \\ 2 & 2{{\omega }^{2}} & 4{{\omega }^{3}} \\ 3 & 3{{\omega }^{3}} & 6{{\omega }^{4}} \\ \end{matrix} | $ where $ \omega $ is the cube root of unity, then

Options:

A) $ \Delta =0 $

B) $ \Delta =1 $

C) $ \Delta =2 $

D) $ \Delta =3 $

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ \Delta = \begin{vmatrix} 1 & \omega & 2{{\omega }^{2}} \\ 2 & 2{{\omega }^{2}} & 4{{\omega }^{3}} \\ 3 & 3{{\omega }^{3}} & 6{{\omega }^{4}} \\ \end{vmatrix} =2\omega \begin{vmatrix} 1 & \omega & \omega \\ 2 & 2{{\omega }^{2}} & 2{{\omega }^{2}} \\ 3 & 3{{\omega }^{3}} & 3{{\omega }^{3}} \\ \end{vmatrix} =0 $