Complex Numbers And Quadratic Equations question 264

Question: If $ n $ is a positive integer greater than unity and $ z $ is a complex number satisfying the equation $ z^{n}={{(z+1)}^{n}} $ , then

Options:

A) $ Re(z)<0 $

B) $ Re(z)>0 $

C) $ Re(z)=0 $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

We have $ z^{n}={{(1+z)}^{n}}\Rightarrow {{( \frac{z}{z+1} )}^{n}}=1 $
Þ $ \frac{z}{z+1}={1^{1/n}} $ Þ $ \frac{z}{z+1} $ is a $ n $ th root of unity Þ $ | \frac{z}{z+1} |=1 $ Þ $ \frac{|z|}{|z+1|}=1 $ Þ $ |z|=|z+1| $
Þ $ x+\frac{1}{2}=0 $ Þ $ x=\frac{-1}{2} $ Þ $ Re(z)<0 $ .