Complex Numbers And Quadratic Equations question 266
Question: If $ z_1,z_2,z_3……n_{n} $ are nth, roots of unity, then for $ k=1,2,…..,n $
Options:
A) $ |z_{k}|=k|{z_{k+1}}| $
B) $ |{z_{k+1}}|=k|z_{k}| $
C) $ |{z_{k+1}}|=|z_{k}|+|{z_{k+1}}| $
D) $ |z_{k}|=|{z_{k+1}}| $
Show Answer
Answer:
Correct Answer: D
Solution:
The  $ {n^{th}} $ roots of unity are given by  $ z_{k}={e^{\frac{i2\pi (k-1)}{n}}},(k=1,2….,n) $  \  $ |z_{k}|=| {e^{\frac{i2\pi (k-1)}{n}}} |=1 $ for all  $ k=1,2,…..,n $
Þ  $ |z_{k}|=|{z_{k+1}}| $ for all  $ k=1,2…..,n $
 BETA
  BETA 
             
             
           
           
           
          