Complex Numbers And Quadratic Equations question 27
Question: The adjoining figure shows the graph of $ y=ax^{2}+bx+c $ . Then
Options:
A) $ a<0 $
B) $ b^{2}<4ac $
C) $ c>0 $
D) a and b are of opposite signs
Show Answer
Answer:
Correct Answer: A
Solution:
It is evident from the figure that the function  $ y=ax^{2}+bx+c $  has a maximum between  $ x_1 $  and  $ x_2 $ .
$ \therefore \frac{d^{2}y}{dx^{2}}<0\Rightarrow  $  $ a<0 $  Obviously, $ x_1,x_2>0 $
Þ  $ x_1+x_2>0 $
Þ Sum of the roots > 0
Þ  $ \frac{-b}{a}>0\Rightarrow \frac{b}{a}<0 $
Þ  a and b are of opposite signs.
 BETA
  BETA 
             
             
           
           
           
          