Complex Numbers And Quadratic Equations question 272

Question: If $ \alpha $ and $ \beta $ are imaginary cube roots of unity, then the value of $ {{\alpha }^{4}}+{{\beta }^{28}}+\frac{1}{\alpha \beta } $ ,is [MP PET 1998]

Options:

A) 1

B) $ -1 $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ \alpha $ and $ \beta $ are complex roots of unity, we may write $ \alpha =\omega ,\beta ={{\omega }^{2}} $ Hence, $ {{\alpha }^{4}}+{{\beta }^{28}}+\frac{1}{\alpha \beta }={{\omega }^{4}}+{{({{\omega }^{2}})}^{28}}+\frac{1}{\omega .{{\omega }^{2}}} $ $ =\omega +{{\omega }^{56}}+1=\omega +{{\omega }^{2}}+1=0 $