Complex Numbers And Quadratic Equations question 284

Question: If $ z+{z^{-1}}=1,\text{then }z^{100}+{z^{-100}} $ is equal to [UPSEAT 2001]

Options:

A) i

B) - i

C) 1

D) - 1

Show Answer

Answer:

Correct Answer: D

Solution:

$ z+{z^{-1}} $ $ =1\Rightarrow z^{2}-z+1=0 $
$ \Rightarrow $ $ z=-\omega $ or $ -{{\omega }^{2}} $ For $ z=-\omega , $ $ z^{100}+{z^{-100}}={{(-\omega )}^{100}}+{{(-\omega )}^{-100}} $ = $ \omega +\frac{1}{\omega }=\omega +{{\omega }^{2}}=-1 $ For z = - w2, $ z^{100}+{z^{-100}}={{(-{{\omega }^{2}})}^{100}}+{{(-{{\omega }^{2}})}^{-100}} $ $ ={{\omega }^{200}}+\frac{1}{{{\omega }^{200}}} $ $ ={{\omega }^{2}}+\frac{1}{{{\omega }^{2}}}={{\omega }^{2}}+\omega $ $ =-1. $