Complex Numbers And Quadratic Equations question 285

Question: If $ \frac{1+\sqrt{3}i}{2} $ is a root of equation $ x^{4}-x^{3}+x-1=0 $ then its real roots are [EAMCET 2002]

Options:

A) 1, 1

B) - 1, - 1

C) 1, - 1

D) 1, 2

Show Answer

Answer:

Correct Answer: C

Solution:

$ x^{4}-x^{3}+x-1=0 $
Þ $ x^{3}(x-1)+1(x-1)=0 $ $ x-1=0 $ or $ x^{3}+1=0 $
Þ $ x=1,-1,\frac{1+\sqrt{3}i}{2},\frac{1-\sqrt{3}i}{2} $ so its real roots are 1 and - 1.