Complex Numbers And Quadratic Equations question 3

Question: If the two equations $ x^{2}-cx+d=0 $ and $ x^{2}-ax+b=0 $ have one common root and the second has equal roots, then $ 2(b+d)= $

Options:

A) 0

B) $ a+c $

C) $ ac $

D) $ -ac $

Show Answer

Answer:

Correct Answer: C

Solution:

Let roots of $ x^{2}-cx+d=0 $ be $ \alpha ,\beta $ then roots of $ x^{2}-ax+b=0 $ be $ \alpha ,\alpha $ \ $ \alpha +\beta =c,\alpha \beta =d,\alpha +\alpha =a,{{\alpha }^{2}}=b $ Hence $ 2(b+d)=2({{\alpha }^{2}}+\alpha \beta )=2\alpha (\alpha +\beta )=ac $