Complex Numbers And Quadratic Equations question 30

Question: The value of p for which both the roots of the equation $ 4x^{2}-20px+(25p^{2}+15p-66)=0 $ are less than 2, lies in

Options:

A) $ (4/5,\ 2) $

B) $ (2,\infty ) $

C) $ (-1,-4/5) $

D) $ (-\infty ,-1) $

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ f(x)=4x^{2}-20px+(25p^{2}+15p-66)=0 $ …..(i) The roots of (i) are real if $ b^{2}-4ac=400p^{2}-16(25p^{2}+15p-66) $ $ =16(66-15p)\ge 0 $
Þ $ p\le 22/5 $ …..(ii) Both roots of (i) are less than 2. Therefore $ f(2)>0 $ and sum of roots < 4. Þ $ {{4.2}^{2}}-20p.2+(25p^{2}+15p-66)>0 $ and $ \frac{20p}{4} $ <4 Þ $ p^{2}-p-2>0 $ and $ p<4/5 $
Þ $ (p+1)(p-2)>0 $ and $ p<4/5 $
Þ $ p<-1 $ or $ p>2 $ and $ p<4/5 $ Þ $ p<-1 $ …..(iii) From (ii) and (iii), we get $ p<-1 $ i.e. $ p\in (-\infty ,-1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें