Complex Numbers And Quadratic Equations question 311

Question: The equation $ z\overline{z}+a\bar{z}+\bar{a}z+b=0,b\in R $ represents a circle if

Options:

A) $ |a{{|}^{2}}=b $

B) $ |a{{|}^{2}}>b $

C) $ |a{{|}^{2}}<b $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

By adding $ a\overline{a} $ on both the sides of $ z\overline{z}+a\overline{z}+\overline{a}z=-b $ we get, $ (z+a)(\overline{z}+\overline{a})=a\overline{a}-b $ $ |z+a{{|}^{2}}=|a{{|}^{2}}-b,{\because z\overline{z}=|z{{|}^{2}}} $ This equation will represent a circle with centre $ z=-a, $ if $ |a{{|}^{2}}-b>0,i.e.|a{{|}^{2}}>b $ since $ |a{{|}^{2}}=b $ represents point circle only.