Complex Numbers And Quadratic Equations question 312

Question: Let the complex numbers $ z_1,z_2 $ and $ z_3 $ be the vertices of an equilateral triangle. Let $ z_0 $ be the circumcentre of the triangle, then $ z_1^{2}+z_2^{2}+z_3^{2}= $ [IIT 1981]

Options:

A) $ z_0^{2} $

B) $ -z_0^{2} $

C) $ 3z_0^{2} $

D) $ -3z_0^{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ r $ be the circum radius of the equilateral triangle and $ \omega $ the cube root of unity. Let $ ABC $ be the equilateral triangle with $ z_1,z_2 $ and $ z_3 $ as its vertices $ A,B $ and C respectively with circumcentre $ {O}’(z_0) $ . The vectors $ {O}‘A,{O}‘B,{O}‘C $ are equal and parallel to $ O{A}’,O{B}’,O{C}’ $ respectively. Then the vectors $ \overrightarrow{O{A}’}=z_1-z_0=r{e^{i\theta }} $ $ \overrightarrow{O{B}’}=z_2-z_0=r{e^{( \theta +\frac{2\pi }{3} )}}=r\omega {e^{i\theta }} $ $ \overrightarrow{O{C}’}=z_3-z_0=r{e^{i( \theta +\frac{4\pi }{3} )}}=r{{\omega }^{2}}{e^{i\theta }} $
$ \therefore $ $ z_1=z_0+r{e^{i\theta }},z_2=z_0+r\omega {e^{i\theta }},z_3=z_0+r{{\omega }^{2}}{e^{i\theta }} $ Squaring and adding $ z_1^{2}+z_2^{2}+z_3^{2}=3z_0^{2}+2(1+\omega +{{\omega }^{2}})z_0r{e^{i\theta }} $ + $ (1+{{\omega }^{2}}+{{\omega }^{4}})r^{2}{e^{i2\theta }} $ $ =3z_{^{0}}^{2}, $ since $ 1+\omega +{{\omega }^{2}}=0=1+{{\omega }^{2}}+{{\omega }^{4}} $ Note: Students should remember this question as a formula.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें