Complex Numbers And Quadratic Equations question 315

Question: If $ a $ and $ b $ are real numbers between 0 and 1 such that the points $ z_1=a+i,z_2=1+bi $ and $ z_3=0 $ form an equilateral triangle, then [IIT 1989]

Options:

A) $ a=b=2+\sqrt{3} $

B) $ a=b=2-\sqrt{3} $

C) $ a=2-\sqrt{3},b=2+\sqrt{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since the triangle with vertices $ z_1=a+i,z_2=1+bi $ and $ z_3=0 $ is equilateral, we have $ z_1^{2}+z_2^{2}+z_3^{2}=z_1z_2+z_2z_3+z_3z_1 $
Þ $ {{(a+i)}^{2}}+{{(1+ib)}^{2}}+0=(a+i)(1+ib)+0+0 $
Þ $ a^{2}-b^{2}+2i(a+b)=a-b+i(1+ab) $ Equating real and imaginary parts, $ a^{2}-b^{2}=a-b $ ??(i) and $ 2(a+b)=1+ab $ ….. (ii) From (i), $ (a-b)[(a+b)-1]=0 $
Þ either $ a=b $ or $ a+b=1 $ Taking $ a=b $ , we get from (ii) $ 4a=1+a^{2} $ or $ a^{2}-4a+1=0 $
$ \therefore a=\frac{4\pm \sqrt{16-4}}{2}=2\pm \sqrt{3} $ Since $ 0<a<1 $ and $ 0<b<1, $ we have $ a=b=2-\sqrt{3} $ Taking $ a+b=1 $ or $ b=1-a, $ we get from (ii) $ 2=1+a(1-a) $ or $ a^{2}-a+1=0 $ , which gives imaginary values of $ a $ . Hence $ a=b=2-\sqrt{3} $ is the required value of $ a $ and $ b $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें