Complex Numbers And Quadratic Equations question 319

Question: If $ \omega $ is a complex number satisfying $ | \omega +\frac{1}{\omega } |=2 $ , then maximum distance of $ \omega $ from origin is

Options:

A) $ 2+\sqrt{3} $

B) $ 1+\sqrt{2} $

C) $ 1+\sqrt{3} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since maximum distance of any complex number $ \omega $ from origin is given by $ |\omega | $ therefore, $ |\omega |=| \omega +\frac{1}{\omega }-\frac{1}{\omega } |\le | \omega +\frac{1}{\omega } |+| \frac{1}{\omega } |=2+\frac{1}{|\omega |} $
Þ $ |\omega {{|}^{2}}-2|\omega |-1\le 0 $
Þ $ |\omega |\le \frac{2\pm 2\sqrt{2}}{2} $ Hence max $ |\omega | $ is $ 1+\sqrt{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें