Complex Numbers And Quadratic Equations question 32

Question: If $ b>a $ , then the equation $ (x-a)(x-b)=1 $ has [IIT Screening 2000]

Options:

A) Both roots in $ [a,b] $

B) Both roots in $ (-\infty ,a) $

C) Both roots in $ (b,+\infty ) $

D) One root in $ (-\infty ,a) $ and the other in $ (b,+\infty ) $

Show Answer

Answer:

Correct Answer: D

Solution:

The equation is $ x^{2}-(a+b)x+ab-1=0 $
$ \therefore $ discriminant $ ={{(a+b)}^{2}}-4(ab-1)={{(b-a)}^{2}}+4>0 $
$ \therefore $ both roots are real. Let them be $ \alpha ,\beta $ where $ \alpha =\frac{(a+b)-\sqrt{{{(b-a)}^{2}}+4}}{2} $ , $ \beta =\frac{(a+b)+\sqrt{{{(b-a)}^{2}}+4}}{2} $ Clearly, $ \alpha <\frac{(a+b)-\sqrt{{{(b-a)}^{2}}}}{2}=\frac{(a+b)-(b-a)}{2}=a $ $ (\because b>a) $ and $ \beta >\frac{(a+b)+\sqrt{{{(b-a)}^{2}}}}{2}=\frac{a+b+b-a}{2}=b $ Hence, one root $ \alpha $ is less than a and the other root b is greater than b.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें