Complex Numbers And Quadratic Equations question 321

Question: $ POQ $ is a straight line through the origin $ O,P $ and $ Q $ represent the complex numbers $ a+ib $ and $ c+id $ respectively and $ OP=OQ $ , then

Options:

A) $ |a+ib|=|c+id| $

B) $ a+c=b+d $

C) $ arg(a+ib)=arg(c+id) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

It is given that $ OP=OQ $
$ \therefore |\overrightarrow{OP}|=|\overrightarrow{OQ}| $ Þ $ |a+ib|=|c+id| $ Also $ \overrightarrow{OP}=-\overrightarrow{OQ},\therefore \overrightarrow{OP}+\overrightarrow{OQ}=0 $
Þ $ (a+c)+i(b+d)=0 $ Þ $ a+c=0=b+d $