Complex Numbers And Quadratic Equations question 323
Question: The centre of a regular polygon of $ n $ sides is located at the point $ z=0 $ and one of its vertex $ z_1 $ is known. If $ z_2 $ be the vertex adjacent to $ z_1 $ , then $ z_2 $ is equal to
Options:
A) $ z_1( \cos \frac{2\pi }{n}\pm i\sin \frac{2\pi }{n} ) $
B) $ z_1( \cos \frac{\pi }{n}\pm i\sin \frac{\pi }{n} ) $
C) $ z_1( \cos \frac{\pi }{2n}\pm i\sin \frac{\pi }{2n} ) $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Let  $ A $  be the vertex with affix  $ z_1 $ . There are two possibilities of  $ z_2, $ i.e.,  $ z_2 $  can be obtained by rotating  $ z_1 $  through  $ \frac{2\pi }{n} $  either in clockwise or in anticlockwise direction. \  $ \frac{z_2}{z_1}=| \frac{z_2}{z_1} |{e^{\pm \frac{i2\pi }{n}}} $
Þ  $ z_2=z_1{e^{\pm \frac{i2\pi }{n}}} $ ,  $ (\because |z_2|=|z_1|) $
Þ   $ z_2=z_1( \cos \frac{2\pi }{n}\pm i\sin \frac{2\pi }{n} ) $
 BETA
  BETA 
             
             
           
           
           
          