Complex Numbers And Quadratic Equations question 326

Question: $ ABCD $ is a rhombus. Its diagonals $ AC $ and $ BD $ intersect at the point $ M $ and satisfy $ BD=2AC $ . If the points $ D $ and $ M $ represents the complex numbers $ 1+i $ and $ 2-i $ respectively, then $ A $ represents the complex number

Options:

A) $ 3-\frac{1}{2}i $ or $ 1-\frac{3}{2}i $

B) $ \frac{3}{2}-i $ or $ \frac{1}{2}-3i $

C) $ \frac{1}{2}-i $ or $ 1-\frac{1}{2}i $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ BD=2AC\Rightarrow 2DM=2(2AM) $ or $ DM=2AM $ or $ DM^{2}=4AM^{2} $ or $ 5=4[{{(x-2)}^{2}}+{{(y+1)}^{2}}] $ …..(i) Again slope of $ DM=-2 $ and slope of $ AM $ is $ \frac{y+1}{x-2} $ AM is perpendicular to DM
$ \therefore -2( \frac{y+1}{x-2} )=-1\Rightarrow x-2=2(y+1) $ …..(ii) Hence from (i) and (ii), we get
$ \therefore y=-\frac{1}{2},-\frac{3}{2} $ and $ x=3,1 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें