Complex Numbers And Quadratic Equations question 327

Question: The complex numbers $ z_1,z_2,z_3 $ are the vertices of a triangle. Then the complex numbers $ z $ which make the triangle into a parallelogram is

Options:

A) $ z_1+z_2-z_3 $

B) $ z_1-z_2+z_3 $

C) $ z_2+z_3-z_1 $

D) All the above

Show Answer

Answer:

Correct Answer: D

Solution:

Let $ A,B,C $ be the points represented by the numbers $ z_1,z_2,z_3 $ and P be the point represented by $ z $ Now the four points $ A,B,C,P $ form a parallelogram in the following three orders. (i) $ A,B,P,C $ (ii) $ B,C,P,A $ and (iii) $ C,A,P,B $ In case (i), the condition for $ A,B,P,C $ to form a parallelogram is $ \overrightarrow{AB}=\overrightarrow{CP} $ i.e., $ z_2-z_1=z-z_3 $ or $ z=z_2+z_3-z_1 $ Similarly in case (ii) and (iii), the required points $ \overrightarrow{BC}=\overrightarrow{AP} $ or $ z_3-z_2=z-z_1 $ i.e., $ z=z_3+z_1-z_2 $ and $ \overrightarrow{CA}=\overrightarrow{BP} $ or $ z_1-z_3=z-z_2 $ i.e., $ z=z_1+z_2-z_3 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें