Complex Numbers And Quadratic Equations question 333

Question: If centre of a regular hexagon is at origin and one of the vertex on argand diagram is 1 + 2i, then its perimeter is [RPET 1999]

Options:

A) $ 2\sqrt{5} $

B) $ 6\sqrt{2} $

C) $ 4\sqrt{5} $

D) $ 6\sqrt{5} $

Show Answer

Answer:

Correct Answer: D

Solution:

Let the vertices be $ z_0,z_1,…..,z_5w.r.t $ centre O at origin and $ |z_0|=\sqrt{5} $ .
$ \Rightarrow $ $ A_0A_1 $ = $ |z_1-z_0|=|z_0{e^{i\theta }}-z_{o}| $ = $ |z_0||\cos \theta +i\sin \theta -1| $ = $ \sqrt{5}\sqrt{{{(\cos \theta -1)}^{2}}+{{\sin }^{2}}\theta } $ = $ \sqrt{5}\sqrt{2(1-\cos \theta )} $ = $ \sqrt{5}2\sin (\theta /2) $
Þ $ A_0A_1 $ = $ \sqrt{5}.2\sin ( \frac{\pi }{6} ) $ = $ \sqrt{5} $ $ ( \because \theta =\frac{2\pi }{6}=\frac{\pi }{3} ) $ ….(i) Similarly, $ A_1A_2=A_2A_3=A_3A_4=A_4A_5=A_5A_0=\sqrt{5} $ . Hence the perimeter of, regular polygon is $ =A_{o}A_1+A_1A_2+A_2A_3+A_3A_4+A_4A_5+A_5A_0 $ $ =6\sqrt{5} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें