Complex Numbers And Quadratic Equations question 337

Question: For all complex numbers $ z_1,z_2 $ satisfying $ |z_1|=12 $ $ \text{and }|z_2-3-4i|=5, $ the minimum value of $ |z_1-z_2| $ is [IIT Screening 2002]

Options:

A) 0

B) 2

C) 7

D) 17

Show Answer

Answer:

Correct Answer: B

Solution:

The two circles are $ C_1(0,0),r_1=12 $ , $ C_2(3,4),r_2=5 $ and it passes through origin, the centre of $ C_1 $ . $ C_1C_2=5<r_1-r_2=7 $ Hence circle $ C_2 $ lies inside circle $ C_1 $ . Therefore minimum distance between them is $ AB=C_1B-C_1A=r_1-2r_2=12-10=2. $