Complex Numbers And Quadratic Equations question 34

Question: If $ 2a+3b+6c=0 $ then at least one root of the equation $ ax^{2}+bx+c=0 $ lies in the interval [Kurukshetra CEE 2002; AIEEE 2002, 04]

Options:

A) (0, 1)

B) (1, 2)

C) (2, 3)

D) (3, 4)

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=ax^{2}+bx+c $ Let $ F(x)=\int{f(x)dx=\frac{a}{3}x^{3}+\frac{b}{2}x^{2}+cx} $ Clearly $ F(0)=0 $ and $ F(1)=\frac{a}{3}+\frac{b}{2}+c $ $ =\frac{2a+3b+6c}{6}=0 $
Þ $ F(0)=F(1)=0 $ There exist at least one point c in between 0 and 1 such that $ {F}’(x)=0 $ or $ ax^{2}+bx+c=0 $ for some $ x\in (0,1) $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें