Complex Numbers And Quadratic Equations question 346

Question: If $ z_1,z_2,z_3 $ are affixes of the vertices $ A,B $ and $ C $ respectively of a triangle $ ABC $ having centroid at $ G $ such that $ z=0 $ is the mid point of $ AG, $ then

Options:

A) $ z_1+z_2+z_3=0 $

B) $ z_1+4z_2+z_3=0 $

C) $ z_1+z_2+4z_3=0 $

D) $ z_1+z_2+z_3=0 $

Show Answer

Answer:

Correct Answer: D

Solution:

The affix of G is $ \frac{z_1+z_2+z_3}{3} $ . Since $ z=0 $ is the mid point of $ AG $ . Therefore affix of the mid-point of $ AG $ is $ \frac{z}{2} $. Þ $ \frac{\frac{z_1+z_2+z_3}{3}+z_1}{1+1}=0\Rightarrow 4z_1+z_2+z_3=0 $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें