Complex Numbers And Quadratic Equations question 351

Question: The area of the triangle whose vertices are represented by the complex numbers 0, z, $ z{e^{i\alpha }}, $ $ (0<\alpha <\pi ) $ equals [AMU 2002]

Options:

A) $ \frac{1}{2}|z{{|}^{2}}\cos \alpha $

B) $ \frac{1}{2}|z{{|}^{2}}\sin \alpha $

C) $ \frac{1}{2}|z{{|}^{2}}\sin \alpha \cos \alpha $

D) $ \frac{1}{2}|z{{|}^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Vertices are $ 0=0+i0, $ $ z=x+iy $ and $ z{e^{i\alpha }}=(x+iy)(\cos \alpha +i\sin \alpha ) $ $ =(x\cos \alpha -y\sin \alpha )+i(y\cos \alpha +x\sin \alpha ) $
$ \therefore $ Area $ =\frac{1}{2}| \begin{matrix} 0 & 0 & 1 \\ x & y & 1 \\ (x\cos \alpha -y\sin \alpha ) & (y\cos \alpha +x\sin \alpha ) & 1 \\ \end{matrix} | $ $ =\frac{1}{2}[xy\cos \alpha +x^{2}\sin \alpha -xy\cos \alpha +y^{2}\sin \alpha ] $ $ =\frac{1}{2}\sin \alpha (x^{2}+y^{2}) $ $ =\frac{1}{2}|z{{|}^{2}}\sin \alpha $ $ [\because |z|=\sqrt{x^{2}+y^{2}}] $ .