Complex Numbers And Quadratic Equations question 351

Question: The area of the triangle whose vertices are represented by the complex numbers 0, z, $ z{e^{i\alpha }}, $ $ (0<\alpha <\pi ) $ equals [AMU 2002]

Options:

A) $ \frac{1}{2}|z{{|}^{2}}\cos \alpha $

B) $ \frac{1}{2}|z{{|}^{2}}\sin \alpha $

C) $ \frac{1}{2}|z{{|}^{2}}\sin \alpha \cos \alpha $

D) $ \frac{1}{2}|z{{|}^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

Vertices are $ 0=0+i0, $ $ z=x+iy $ and $ z{e^{i\alpha }}=(x+iy)(\cos \alpha +i\sin \alpha ) $ $ =(x\cos \alpha -y\sin \alpha )+i(y\cos \alpha +x\sin \alpha ) $
$ \therefore $ Area $ =\frac{1}{2}| \begin{matrix} 0 & 0 & 1 \\ x & y & 1 \\ (x\cos \alpha -y\sin \alpha ) & (y\cos \alpha +x\sin \alpha ) & 1 \\ \end{matrix} | $ $ =\frac{1}{2}[xy\cos \alpha +x^{2}\sin \alpha -xy\cos \alpha +y^{2}\sin \alpha ] $ $ =\frac{1}{2}\sin \alpha (x^{2}+y^{2}) $ $ =\frac{1}{2}|z{{|}^{2}}\sin \alpha $ $ [\because |z|=\sqrt{x^{2}+y^{2}}] $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें