Complex Numbers And Quadratic Equations question 354

Question: When $ \frac{z+i}{z+2} $ is purely imaginary, the locus described by the point $ z $ in the Argand diagram is a

Options:

A) Circle of radius $ \frac{\sqrt{5}}{2} $

B) Circle of radius $ \frac{5}{4} $

C) Straight line

D) Parabola

Show Answer

Answer:

Correct Answer: A

Solution:

Given that Im $ ( \frac{z+i}{z+2} ) $ Let $ z=x+iy $ Þ $ \frac{x+iy+i}{x+iy+2} $ = $ \frac{x+i(y+1)}{(x+2)+iy} $ $ =\frac{[x+i(y+1)][(x+2)-iy]}{[(x+2)+iy][(x+2)-iy]} $ $ =[ \frac{x^{2}+2x+y^{2}+y}{{{(x+2)}^{2}}+y^{2}} ]+i[ \frac{(y+1)(x+2)-xy}{{{(x+2)}^{2}}+y^{2}} ] $ If it is purely imaginary then real part must be equal to zero. Þ $ \frac{x^{2}+y^{2}+2x+y}{{{(x+2)}^{2}}+y^{2}}=0 $ Þ $ x^{2}+y^{2}+2x+y=0 $ Which is a circle and its radius is given by $ \sqrt{g^{2}+f^{2}-c}=\sqrt{1+\frac{1}{4}-0}=\frac{\sqrt{5}}{2} $ Therefore Argand diagram is circle of radius $ \frac{\sqrt{5}}{2} $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें