Complex Numbers And Quadratic Equations question 357

Question: The region of Argand plane defined by $ |z-1|+|z+1|\le 4 $ is

Options:

A) Interior of an ellipse

B) Exterior of a circle

C) Interior and boundary of an ellipse

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

We have $ |z-1|+|z+1|\le 4 $
Þ $ |z-1{{|}^{2}}+|z+1{{|}^{2}}+2|z-1||z+1|\le 16 $
Þ $ (z-1)(\overline{z}-1)+(z+1)(\overline{z}+1)+2|(z-1)(z+1)|\le 16 $
Þ $ 2|z{{|}^{2}}+2+2|z^{2}-1|\le 16 $
Þ $ |z{{|}^{2}}+|z^{2}-1|\le 7 $
Þ $ |x+iy{{|}^{2}}+|{{(x+iy)}^{2}}-1|\le 7 $ Þ $ \frac{x^{2}}{4}+\frac{y^{2}}{3}\le 1 $ (ellipse) Therefore the points $ z $ are on the boundary or in the interior of the ellipse.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें