Complex Numbers And Quadratic Equations question 361
Question: A point z moves on Argand diagram in such a way that |z -3i| $ =2, $ then its locus will be [RPET 1992; MP PET 2002]
Options:
A) $ y- $ axis
B) A straight line
C) A circle
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ |z-3i|=2, $ let  $ z=x+iy $
Þ  $ |x+i(y-3)|=2 $  Squaring both sides, we get  $ [x^{2}+{{(y-3)}^{2}}]=4 $
Þ $ x^{2}+y^{2}-6y+5=0 $
 BETA
  BETA 
             
             
           
           
           
          