Complex Numbers And Quadratic Equations question 367
Question: If $ arg(z-a)=\frac{\pi }{4} $ , where $ a\in R $ , then the locus of $ z\in C $ is a [MP PET 1997]
Options:
A) Hyperbola
B) Parabola
C) Ellipse
D) Straight line
Show Answer
Answer:
Correct Answer: D
Solution:
$ arg{ (x-a)+iy }=\frac{\pi }{4} $
Þ $ {{\tan }^{-1}}( \frac{y}{x-a} )=\frac{\pi }{4} $
Þ $ \frac{y}{x-a}=\tan \frac{\pi }{4}=1\Rightarrow $ $ x-a=y $