Complex Numbers And Quadratic Equations question 367

Question: If $ arg(z-a)=\frac{\pi }{4} $ , where $ a\in R $ , then the locus of $ z\in C $ is a [MP PET 1997]

Options:

A) Hyperbola

B) Parabola

C) Ellipse

D) Straight line

Show Answer

Answer:

Correct Answer: D

Solution:

$ arg{ (x-a)+iy }=\frac{\pi }{4} $ Þ $ {{\tan }^{-1}}( \frac{y}{x-a} )=\frac{\pi }{4} $
Þ $ \frac{y}{x-a}=\tan \frac{\pi }{4}=1\Rightarrow $ $ x-a=y $