Complex Numbers And Quadratic Equations question 369

Question: Locus of the point z satisfying the equation $ |iz-1| $ + $ |z-i|=2 $ is [Roorkee 1999]

Options:

A) A straight line

B) A circle

C) An ellipse

D) A pair of straight lines

Show Answer

Answer:

Correct Answer: A

Solution:

$ |iz-1|+|z-i|=2 $
$ \Rightarrow $ $ |i(x+iy)-1|+|x+iy-i|=2 $
$ \Rightarrow $ $ |-(y+1)+ix|+|x+i(y-1)|=2 $
$ \Rightarrow $ $ \sqrt{{{(-(y+1))}^{2}}+x^{2}}+\sqrt{x^{2}+{{(y-1)}^{2}}}=2 $
$ \Rightarrow $ $ \sqrt{{{(y+1)}^{2}}+x^{2}}=2-\sqrt{x^{2}+{{(y-1)}^{2}}} $
$ \Rightarrow $ $ y^{2}+1+2y+x^{2}=4+x^{2}+y^{2}+1-2y-4\sqrt{x^{2}+{{(y-1)}^{2}}} $
$ \Rightarrow $ $ 4y=4-4\sqrt{x^{2}+{{(y-1)}^{2}}} $
$ \Rightarrow $ $ y=1-\sqrt{x^{2}+{{(y-1)}^{2}}} $
$ \Rightarrow $ $ x^{2}+{{(y-1)}^{2}}={{(1-y)}^{2}} $
$ \Rightarrow $ $ x^{2}+y^{2}+1-2y=1+y^{2}-2y $
$ \Rightarrow $ $ x^{2}=0\Rightarrow x=0 $ i.e. equation of straight line.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें