Complex Numbers And Quadratic Equations question 371

Question: The locus of the point z satisfying $ arg( \frac{z-1}{z+1} )=k, $ (where k is non zero) is [Orissa JEE 2002]

Options:

A) Circle with centre on y-axis

B) Circle with centre on x-axis

C) A straight line parallel to x-axis

D) A straight line making an angle $ 60^{o} $ with the x-axis

Show Answer

Answer:

Correct Answer: A

Solution:

$ arg( \frac{z-1}{z+1} )=k $
$ \Rightarrow $ $ arg( \frac{(x-1)+iy}{(x+1)+iy} )=k $
$ \Rightarrow $ $ arg[ (x-1)+iy ]-arg[ (x+1)+iy ]=k $
$ \Rightarrow $ $ {{\tan }^{-1}}( \frac{y}{x-1} )-{{\tan }^{-1}}( \frac{y}{x+1} )=k $
$ \Rightarrow $ $ {{\tan }^{-1}}[ \frac{\frac{y}{(x-1)}-\frac{y}{(x+1)}}{1+\frac{y^{2}}{x^{2}-1}} ]=k $
$ \Rightarrow $ $ \tan k=\frac{y(x+1)-y(x-1)}{x^{2}+y^{2}-1}=\frac{2y}{x^{2}+y^{2}-1} $
$ \Rightarrow $ $ \frac{2y}{\tan k}=x^{2}+y^{2}-1 $
$ \Rightarrow $ $ x^{2}+y^{2}-\frac{2y}{\tan k}-1=0 $ It is an equation of circle whose centre is $ (-g,-f)=(0,\cot k) $ on y-axis.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें