Complex Numbers And Quadratic Equations question 373

Question: If $ |z^{2}-1|=|z{{|}^{2}}+1 $ , then $ z $ lies on [AIEEE 2004]

Options:

A) An ellipse

B) The imaginary axis

C) A circle

D) The real axis

Show Answer

Answer:

Correct Answer: B

Solution:

We have $ |z^{2}-1|\ =\ |z{{|}^{2}}+1 $
Þ $ |{{(x+iy)}^{2}}-1|\ =\ |x+iy{{|}^{2}}+1 $
Þ $ |(x^{2}-y^{2}-1)+2xyi|\ ={{( \sqrt{x^{2}+y^{2}} )}^{2}}+1 $
Þ $ \sqrt{{{(x^{2}-y^{2}-1)}^{2}}+{{(2xy)}^{2}}}=x^{2}+y^{2}+1 $
Þ $ x^{4}+y^{4}+1-2x^{2}y^{2}+2y^{2}-2x^{2}+4x^{2}y^{2} $ $ =x^{4}+y^{4}+1+2x^{2}y^{2}+2y^{2}+2x^{2} $
Þ $ 2x^{2}y^{2}=2x^{2}y^{2}+4x^{2} $ Þ $ x=0 $ then, $ z=x+iy=0+iy=iy $ Hence $ z $ lies on imaginary axis.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें