Complex Numbers And Quadratic Equations question 374

Question: If $ \frac{-31}{17} $ and $ \omega =\frac{1-iz}{z-i} $ than $ |\omega |=1 $ shows that in complex plane [RPET 1985, 97; IIT 1983; DCE 2000, 01; UPSEAT 2003; MP PET 2004]

Options:

A) z will be at imaginary axis

B) z will be at real axis

C) z will be at unity circle

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ w=\frac{1-iz}{z-i} $ , then $ |w|\ =1 $
Þ $ | \ \frac{1-iz}{z-i}\ |\ =1 $
Þ $ |1-iz|\ =\ |z-i| $
Þ $ |1-i(x+iy)|\ =\ |x+iy-i| $
Þ $ |(1+y)-ix|\ =\ |x+i(y-1)| $
Þ $ \sqrt{x^{2}+1+y^{2}+2y}=\sqrt{x^{2}+y^{2}+1-2y} $ Þ $ y=0 $ Hence $ z=x+iy=x $ . So z lies on real axis.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें