Complex Numbers And Quadratic Equations question 379

Question: PQ and PR are two infinite rays. QAR is an arc. Point lying in the shaded region excluding the boundary satisfies [IIT Screening 2005]

Options:

A) $ |z-1|>2;|\arg (z-1)|<\frac{\pi }{4} $

B) $ |z-1|>2;|\arg (z-1)|<\frac{\pi }{2} $

C) $ |z+1|>2;|\arg (z+1)|<\frac{\pi }{4} $

D) $ |z+1|>2;|\arg (z+1)|<\frac{\pi }{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

Equation of ray PQ $ \arg (z+1)=\frac{\pi }{4} $ Equation of ray PR $ \arg (z+1)=-\frac{\pi }{4} $ Shaded region is $ \frac{-\pi }{4}<\arg (z+1)<\frac{\pi }{4} $ $ |\arg (z+1)|<\frac{\pi }{4} $ ; $ |PQ|=\sqrt{{{(\sqrt{2})}^{2}}+{{(\sqrt{2})}^{2}}}=2 $ |PA| =2; |PR| = 2 so, arc QAR is of a circle of radius 2 unit with centre at $ P(-1,0) $ . All the points in the shaded region are exterior to this circle $ |z+1|=2 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें