Complex Numbers And Quadratic Equations question 38

Question: The complex numbers $ \sin x+i\cos 2x $ and $ \cos x-i\sin 2x $ are conjugate to each other for [IIT 1988]

Options:

A) $ x=n\pi $

B) $ x=( n+\frac{1}{2} )\pi $

C) $ x=0 $

D) No value of x exists

Show Answer

Answer:

Correct Answer: D

Solution:

$ \sin x+i\cos 2x $ and $ \cos x-i\sin 2x $ are conjugate to each other if $ \frac{|z_1-z_2|}{|\overline{z_1-z_2}|}=\frac{|z_1-z_2|}{|z_1-z_2|}=1 $ and $ \cos 2x=\sin 2x $ or $ \tan x=1 $ Þ $ x=\frac{\pi }{4},\frac{5\pi }{4},\frac{9\pi }{4},…… $ ??(i) and $ \tan 2x=1 $ Þ $ 2x=\frac{\pi }{4},\frac{5\pi }{4},\frac{9\pi }{4},…….. $ or $ x=\frac{\pi }{8},\frac{5\pi }{8},\frac{9\pi }{8} $ ……. …….(ii) There exists no value of $ x $ common in (i) and (ii). Therefore there is no value of $ x $ for which the given complex numbers are conjugate.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें