Complex Numbers And Quadratic Equations question 383

Question: If $ z=\sqrt{2}-i\sqrt{2} $ is rotated through an angle $ 45{}^\circ $ in the anti-clockwise direction about the origin, then the coordinates of its new position are [Kerala (Engg.) 2005]

Options:

A) (2, 0)

B) ( $ \sqrt{2},\sqrt{2} $ )

C) $(\sqrt{2},-\sqrt{2})$

D) $ (\sqrt{2},0) $

E) (4, 0)

Show Answer

Answer:

Correct Answer: D

Solution:

$ z=\sqrt{2}-i\sqrt{2} $ Here, $ \theta ={{\tan }^{-1}}( \frac{-\sqrt{2}}{\sqrt{2}} ) $ = $ {{\tan }^{-1}}(-1) $ = $ -45^{o} $ Now, rotate z in opposite direction with 45° angle $ \therefore $ $ \theta =180{}^\circ $
$ \therefore $ $ \theta ={{\tan }^{-1}}(0)={{\tan }^{-1}}( \frac{0}{\sqrt{2}} ) $
Þ Hence $ x=\sqrt{2} $ and $ y=0 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें