Complex Numbers And Quadratic Equations question 387

Question: If $ {{( \frac{1+i}{1-i} )}^{m}}=1, $ then the least integral value of $ m $ is [IIT 1982; MNR 1984; UPSEAT 2001; MP PET 2002]

Options:

A) 2

B) 4

C) 8

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \frac{1+i}{1-i}=\frac{1+i}{1-i}\times \frac{1+i}{1+i}=\frac{{{(1+i)}^{2}}}{2}=\frac{2i}{2}=i $
$ \therefore $ $ {{( \frac{1+i}{1-i} )}^{m}}=i^{m}=1 $ (as given) So the least value of $ m=4 $ $ {\because i^{4}=1} $