Complex Numbers And Quadratic Equations question 39

Question: If $ z $ is a complex number, then $ (\overline{{z^{-1}}})(\overline{z})= $

Options:

A) 1

B) -1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ z=x+iy,\overline{z}=x-iy $ and $ {z^{-1}}=\frac{1}{x+iy} $
Þ $ (\overline{{z^{-1}}})=\frac{x+iy}{x^{2}+y^{2}} $ ;
$ \therefore $ $ (\overline{{z^{-1}}})\bar{z}=\frac{x+iy}{x^{2}+y^{2}}(x-iy)=1 $