Complex Numbers And Quadratic Equations question 398

Question: The value of $ {i^{1+3+5+…+(2n+1)}} $ is [AMU 1999]

Options:

A) i if n is even, - i if n is odd

B) 1 if n is even, - 1 if n is odd

C) 1 if n is odd, - 1 if n is even

D) i if n is even, - 1 if n is odd

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ z={i^{[1+3+5+….+(2n+1)]}} $ Clearly series is A.P. with common difference = 2 $ \because T_{n}=2n-1 $ and $ {T_{n+1}}=2n+1 $ So, number of terms in A. P. $ =n+1 $ Now, $ {S_{n+1}}=\frac{n+1}{2}[2.1+(n+1-1)2] $
$ \Rightarrow {S_{n+1}}=\frac{n+1}{2}[2+2n]={{(n+1)}^{2}} $ i.e. $ {i^{{{(n+1)}^{2}}}} $ Now put $ n=1,2,3,4,5,….. $ $ n=1,z=i^{4}=1 $ , $ n=2,z=i^{6}=-1 $ , $ n=3,z=i^{8}=1 $ , $ n=4,z=i^{10}=-1 $ , $ n=5,z=i^{12}=1,…….. $



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें