Complex Numbers And Quadratic Equations question 398
Question: The value of $ {i^{1+3+5+…+(2n+1)}} $ is [AMU 1999]
Options:
A) i if n is even, - i if n is odd
B) 1 if n is even, - 1 if n is odd
C) 1 if n is odd, - 1 if n is even
D) i if n is even, - 1 if n is odd
Show Answer
Answer:
Correct Answer: C
Solution:
Let  $ z={i^{[1+3+5+….+(2n+1)]}} $  Clearly series is A.P. with common difference = 2  $ \because T_{n}=2n-1 $ and  $ {T_{n+1}}=2n+1 $  So, number of terms in A. P.  $ =n+1 $  Now,  $ {S_{n+1}}=\frac{n+1}{2}[2.1+(n+1-1)2] $
$ \Rightarrow {S_{n+1}}=\frac{n+1}{2}[2+2n]={{(n+1)}^{2}} $  i.e.  $ {i^{{{(n+1)}^{2}}}} $  Now put  $ n=1,2,3,4,5,….. $   $ n=1,z=i^{4}=1 $ ,  $ n=2,z=i^{6}=-1 $ ,   $ n=3,z=i^{8}=1 $ ,  $ n=4,z=i^{10}=-1 $ ,  $ n=5,z=i^{12}=1,…….. $
 BETA
  BETA 
             
             
           
           
           
          